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1

Executive Summary

T
his State of the Arctic Report presents a review of recent data by an

international group of scientists who developed a consensus on the in-
formation content and reliability. The report highlights data primarily

from 2000 to 2005 with a first look at winter 2006, providing an update to some
of the records of physical processes discussed in the Arctic Climate Impact As-
sessment (ACIA, 2004, 2005). Of particular note:

• Atmospheric climate patterns are shifting (Fig. 1). The late winter/spring
pattern for 2000–2005 had new hot spots in northeast Canada and the
East Siberian Sea relative to 1980–1999. Late winter 2006, however, shows
a return to earlier climate patterns, with warm temperatures in the ex-
tended region near Svalbard.

Figure 1: The Arctic system generally shows signs
of continued warming, as illustrated in this north-
ern hemisphere map of springtime (March–April–
May, or MAM) surface air temperature anomalies
for 2000–2005 that differ from earlier temperature
patterns in the 20th century. Yellow and red indicate
temperatures at least 1◦C above average relative to a
1968–1996 base period.

Figure 2: Loss of sea ice and warmer ocean temper-
atures, highlighted in this report, have favored the
pollock fishery in Alaskan waters. (Bryan & Cherry
Alexander Photography.)
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• Ocean salinity and temperature profiles at the North Pole and in the Beau-
fort Sea, which changed abruptly in the 1990s, show that conditions since
2000 have relaxed toward the pre-1990 climatology, although 2001–2004
has seen an increase in northward ocean heat transport through Bering
Strait (Fig. 2), which is thought to impact sea ice loss.

• Sea ice extent continues to decrease. The sea ice extent in September
2005 was the minimum observed in summer during the satellite era (be-
ginning in 1979), marking an unprecedented series of extreme ice extent
minima beginning in 2002 (Fig. 3). The sea ice extent in March 2006 was
also the minimum observed in winter during the satellite era.

• Tundra vegetation greenness increased, primarily due to an increase in
the abundance of shrubs. Boreal forest vegetation greenness decreased,
possibly due to drought conditions (Fig. 4).

• There is increasing interest in the stability of the Greenland ice sheet. The
velocity of outlet glaciers increased in 2005 relative to 2000 and 1995, but
uncertainty remains with regard to the total mass balance.

• Permafrost temperatures continue to increase. However, data on changes
in the active layer thickness (the relatively thin layer of ground between
the surface and permafrost that undergoes seasonal freezing and thaw-
ing) are less conclusive. While some of the sites show a barely noticeable
increasing trend in the thickness of the active layer, most of them do not.

• Globally, 2005 was the warmest year in the instrumental record (begin-
ning in 1880), with the Arctic providing a large contribution toward this
increase.

Many of the trends documented in the ACIA are continuing, but some are
not. Taken collectively, the observations presented in this report indicate that

Figure 3: The report describes a continued reduction in
the extent of summer sea ice cover which has recently
benefited ship-based operations in this region. (Photo
courtesy of Jeremy Harbeck.)

Figure 4: Observed increases in drought-related condi-
tions in the boreal forests may have contributed to the
increase in major wildfires over large parts of northern
Alaska during the last two summers. (Photo by Mike
McMillan, Spotfire Images.)
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during 2000–2005 the Arctic system showed signs of continued warming. How-
ever, there are a few indications that certain elements may be recovering and
returning to recent climatological norms (for example, the central Arctic Ocean
and some wind patterns). These mixed tendencies further illustrate the sensi-
tivity and complexity of the Arctic physical system. They underline the impor-
tance of maintaining and expanding efforts to observe and better understand
this important component of the climate system to provide accurate predic-
tions of its future state.

1. Introduction

T
he permanent presence of sea ice, ice sheets, and continuous perma-

frost are unique features of the polar regions. The Arctic is further dis-
tinguished because it sustains a human population in a harsh environ-

ment. These characteristics amplify the impact of global climate change on
both the regional physical and societal systems. These impacts reach beyond
the Arctic region. For instance, studies are underway to determine the extent
to which the loss of sea ice cover and the conversion of tundra to larger shrubs
and wetlands, observed to have occurred over the last two decades, have im-
pacted multi-year persistence in the surface temperature fields, especially in
the Pacific sector (Overland and Wang, 2005).

This State of the Arctic Report presents a review of recent data by an in-
ternational group of scientists who developed a consensus on the information
content and reliability. It provides observations indicating continuing trends in
the current state of physical components of the Arctic system, including the at-
mosphere, ocean, sea ice cover, and land. The report highlights data primarily
from 2000 to 2005 with a first look at winter 2006, providing an update to some
of the data records of physical processes discussed in the Arctic Climate Im-
pact Assessment (ACIA 2004, 2005). The temporal extent of the data provides a
multi-decadal perspective and confirms the sensitivity of the Arctic to changes
in the global climate system.

2. Atmosphere

2.1 Circulation Regime

S
ince its introduction by Thompson and Wallace (1998), the Arctic Oscil-

lation (AO) index has become a popular means of delineating between
the two dominant atmospheric circulation regimes in the Arctic region.

Identification of the current circulation regime and prediction of the future
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regime are important because each regime is characterized by a set of envi-
ronmental parameters that impact human activity in the Arctic. Atmospheric,
sea ice, and oceanic observational data, along with the results of numerical
coupled ice-ocean models, provide evidence that during anticyclonic (nega-
tive AO) circulation regimes, the Arctic atmospheric pressure is higher, wind
speed is lower, winter temperatures are lower, ocean waters are fresher, sea ice
areal coverage is greater, and sea ice is thicker than during cyclonic (positive
AO) regimes. When the cyclonic circulation regime dominates, the transport
of sea ice from the Arctic Ocean increases, and summer wind divergence pro-
duces more openings in the sea ice, allowing the upper ocean to accumulate
heat. In addition, under a cyclonic circulation regime, advection of heat with
air masses to the Arctic also increases. This positive heat anomaly extends the
sea ice melt season, increases ocean freshwater content, and leads to a gener-
ally thinner sea ice cover.

The annually averaged AO index in 2005 was slightly negative, continuing
the trend of a relatively low and fluctuating index that began in the mid-1990s
(Fig. 5). This follows a strong positive pattern from 1989 to 1995. The current
characteristics of the AO are more consistent with the characteristics of the pe-
riod from the 1950s to the 1980s, when the AO switched frequently between
positive and negative phases.

2.2 Surface Temperatures

Annual surface temperatures over land areas north of 60◦N continue to remain
above the mean value for the twentieth century (Fig. 6), a feature observed
since the early 1990s. Figure 6 also shows that there were warm temperatures in
the 1930s and early 1940s, possibly suggesting a longer-term oscillation in cli-
mate. However, a detailed analysis shows that the proximate causes and char-
acteristics for the 1930s maxima were different than for the 1990s maxima. The
earlier warm anomalies appear to be associated with intrinsic variability that
had large region-to-region differences and was limited to high latitudes (Jo-
hannessen et al., 2004; Overland et al., 2004a). The warm anomalies since the
1990s tend to be Arctic-wide and reach into the mid-latitudes.

The near-surface air temperatures in winter and spring 2005 (Fig. 7a) con-
tinued to have the same general spatial pattern of warm anomalies as in 2000–
2004. A major feature is positive (warm) anomalies over the entire Arctic, con-
sistent with the time series in Fig. 6. A second feature is the strong maxima
north of eastern Siberia and in northeastern Canada/west Greenland. Anoma-
lies in spring (March–June) for the last 6 years for these coastal areas are near
3–4◦C. The ocean north of eastern Siberia is also a main region for loss of sea
ice cover over the last decade (discussed later).

The highest annual global surface temperature in more than a century of
instrumental data (beginning in 1880) was recorded in the 2005 calendar year
(Hansen, 2006). The ranking of 2005 as the warmest year is a result mainly of
the large positive Arctic temperature anomalies (Fig. 7a). Excluding the region
north of 75◦N, 1998 (an El Niño year) was warmer than 2005.
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Figure 5: Time series of the annually averaged Arctic Oscillation Index (AO) for the
period 1950–2005, based on data from the website www.cpc.ncep.noaa.gov (courtesy
of I. Rigor).

The pattern of near-surface temperature anomalies for the recent period
(2000–2005) is distinctly different from the patterns that characterized the sec-
ond half of the twentieth century. The patterns observed in the second half
of the twentieth century can be associated with two major atmospheric circu-
lation patterns, commonly described by the AO and Pacific North American
(PNA) indices (Quaddrelli and Wallace, 2004). These patterns are illustrated for
1989–1995, when the AO was strongly positive (Figs. 7c), and 1977–1988, when
the PNA was strongly positive (Fig. 7d). The strongly positive AO climate pat-
tern during 1989–1995 (Fig. 7c) was associated with temperature anomaly max-
ima in northern Europe and north-central Asia in winter, expanding to north-
ern Alaska in spring. As part of the positive AO pattern, west Greenland was
cold. The positive PNA pattern was dominant from 1977 to 1988, with warm
temperature anomalies over northern North America (Fig. 7d). The contrast of
2000–2005 near-surface temperature anomalies (Fig. 7a), with maxima in west
Greenland and northeast Siberia, to the temperature patterns associated with
the AO and PNA suggest that the recent atmospheric circulation pattern is dif-
ferent from the main patterns of the second half of the twentieth century (Over-
land and Wang, 2005).
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CRUTEM2v
19 Stations

Annual Mean SAT Anomaly 60–90°N

Figure 6: Arctic-wide and annual averaged surface air temperature anomalies (60◦–
90◦N) over land for the 20th century based on the CRU TEM2V monthly data set.

The run of unusual conditions observed for 2000–2005 may be coming to
an end. The temperature anomaly pattern in early spring for 2006 shows a re-
turn of the dominance of the two twentieth-century climate patterns (Fig. 7b),
with a negative AO and La Niña in the Pacific reducing the sea level pressures
over both the northern Pacific and Atlantic Oceans. The Svalbard region is par-
ticularly warm.

2.3 Forcing of Atmospheric Changes

Past, present, and future states of the Arctic climate will be forced by the com-
bination and interaction of external forcing, climate noise, and internal feed-
backs. External forcing consists of direct or indirect (through changes in weather
patterns at lower latitudes) influences from greenhouse gases, solar variability,
and volcanoes. Large natural atmospheric variability (climatic noise), as rep-
resented in part by the AO and PNA, can result in multi-year persistence of
Arctic climate patterns. Data from the previous century suggest that the Arctic
atmosphere will continue to be influenced to a major extent by these patterns.
Changes in sea ice and tundra surface conditions, and changes in heat fluxes to
and from the ocean, contribute to internal feedbacks and multi-year memory
in the Arctic climate system. For instance, the loss of sea ice in the Beaufort
and Chukchi Seas is consistent with positive trends in downward long-wave
flux, which appear to be caused by substantial increases in precipitable water,
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(a) (b)

(c) (d)

Figure 7: Near surface March–June temperature anomaly composites (at the 1000 mb geopotential height level).
The figure is based on NCEP reanalysis fields via the CDC website, www.cdc.noaa.gov. Anomalies are relative
to a 1968–1996 base period. (a) Composite for March to June 2005. The pattern for 2005 is similar to the patterns
for 2000–2004. Coastal stations in eastern Siberia and west Greenland match the 3–4◦C anomaly magnitude
from the NCEP reanalysis. (b) Composite for February to April 2006. (c) Composite for winter 1989–1995 when
the positive Arctic Oscillation climate pattern was strong. (d) Composite for winter 1977–1988 when the positive
Pacific North American pattern was strong.

cloud amount, and surface temperature (Francis et al., 2005). See Section 4.2
on changes in the surface energy budget.

Of particular interest are atmospheric circulation contributions to the latest
warm period, marked by less sea ice and changes in tundra conditions. Arc-
tic cyclone activity (i.e., storms that bring warm, moist air to the Arctic) in-
creased in number and intensity in the second half of the twentieth century,
especially in summer, coupled with a general decrease in storminess in the
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mid-latitudes (Serreze et al., 1997; Zhang et al., 2004). During winter and spring
these changes were associated with the positive phases of the PNA in the 1980s
and the AO in the 1990s. Closer inspection of results in Zhang et al. (2004)
show that high-latitude cyclone activity peaked in the early 1990s and has sub-
sequently declined, along with a decrease in the AO, albeit with large variations
from year to year. Most recently the summers of 2002 and 2003 saw an unusu-
ally large number of cyclones over the central Arctic Ocean. The summers of
2004 and 2005 did not show strong summer cyclone maxima.

Another way to measure the influence of mid-latitude atmospheric circula-
tion is to compute the amount of net atmospheric northward energy transport
(ANET) across the 60◦N latitude circle. About 25% of the Arctic surface air tem-
perature trend from 1979 to 2001 in winter and spring (Fig. 6) is related to an
increase in the ANET (Fig. 8). The strongest linkage is in the Atlantic sector.
Both the general trends of an increase in cyclones and an increase in the ANET
suggest increased linkages of the Arctic to the mid-latitude atmospheric circu-
lation in recent decades.

3. Ocean

3.1 Circulation

F
igure 5 illustrates idealized patterns of the two dominant wind-driven

ocean circulation regimes: anticyclonic and cyclonic. Climatological
studies (e.g., Proshutinsky and Johnson, 1997) provide a foundation for

understanding the significance of these ocean surface conditions. These stud-
ies indicate that the Arctic ocean surface layer motion is consistent with the
Arctic atmosphere surface layer motion, alternating between cyclonic and an-
ticyclonic circulation regimes. Each regime persists from 4 to 8 years, resulting
in a period of 8–16 years. The cyclonic pattern dominated during 1989–1996.
Since 1997 the dominant regime has fluctuated, with an anticyclonic pattern
being slightly more prevalent (Fig. 5).

Data from satellites and drifting buoys indicate that the circulation of the
ocean surface layer has been characterized by an anticyclonic regime for the
entire 2000–2005 period (Fig. 9, top panel). The anticyclonic regime is the result
of a higher sea level atmospheric pressure over the Arctic Ocean, relative to the
1948–2005 mean, and the prevalence of anticyclonic winds.

The circulation of Pacific water (located at depths between 50 and 200 m)
in the Arctic Ocean may be coherent with the surface currents, but its pathways
are not known from direct observations. Recently our understanding of the ver-
tical structure of this layer and its properties has been revised by Shimada et al.
(2001, 2004) and Steele et al. (2004), who reported the presence of two types
of summer Pacific halocline water and one type of winter Pacific halocline wa-
ter in the Arctic Ocean. According to the Environmental Working Group (EWG)
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Figure 8: Surface air temperature (SAT) trends associated with net atmospheric north-
ward energy transport (ANET) for December through May, 1979–2001. Solid and dot-
ted lines are positive and negative contours, respectively. The contour interval is
0.25◦C per decade; the zero line is omitted. These data were computed from regres-
sion of the SAT field on the ANET across 60◦N using monthly mean data where the
annual cycle is removed. The data are from the European Centre for Medium-Range
Weather Forecasts ERA-40 reanalysis (see www.ecmwf.int/research/era/).

analysis (EWG, 1997, 1998), the total thickness of the Pacific layer is approx-
imately 150 m. This thickness is subject to temporal variability (McLaughlin
et al., 2003), depending on wind stresses and circulation modes (Proshutinsky
et al., 2002). Steele et al. (2004) found similar evidence in their examination
of data from the 1980s and 1990s. The most recent studies by Shimada et al.
(2006) and Maslowski et al. (2006) indicate that the significant reduction of sea
ice in the Canadian Basin observed in 2002–2005 (discussed later) may be at-
tributable in part to an increase of heat flux from the Pacific water layer to the
bottom of the sea ice, resulting in sea ice melt. Warming of the Pacific water is
associated with an increase of heat flux via Bering Strait. In this region, prelimi-
nary observations from a mooring site, established and maintained since 1990,
suggest that annual mean water temperatures have been about 1◦C warmer
since 2002, compared to 1990–2001 (Woodgate et al., 2006). Since 2001, there
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Figure 9: Idealized patterns of the dominant circulation regimes of the Arctic Ocean. Two circulation regimes
of surface waters (anticyclonic—top; cyclonic—bottom) are shown in wide blue arrows. In the cyclonic regime
the clockwise circulation pattern in the Beaufort Sea region (the Beaufort Gyre) weakens, and the flow across the
basin, from the Siberian and Russian coasts to Fram Strait (the Transpolar Drift), shifts poleward. The cyclonic
pattern dominated during 1989–1996; the anticyclonic pattern has prevailed since 1997. The Atlantic water cir-
culates cyclonically (red arrows) at approximately 200–800 m deep, independent of the circulation regime of the
surface layer. (Adapted from Proshutinsky et al., 2005.)
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has also been an increase in the annual mean water transport. Changes in the
Pacific water circulation may also influence heat release from the Pacific water
to the upper ocean layers.

The Atlantic water circulates in the Arctic Ocean at approximately 200–800
m deep. This water penetrates to the Arctic via Fram Strait and St. Anna Trough
(Barents Sea). Under extensive surface cooling, it sinks to intermediate depths
and forms the warm Atlantic Layer, with water temperatures greater than 0◦C.
This layer is covered by low-density surface waters and is thus prevented from
undergoing heat exchange with the atmosphere. The most widely accepted cir-
culation scheme of Atlantic water (Rudels et al., 1994) postulates that it circu-
lates counterclockwise, forming several loops in the Arctic basins (Fig. 9, red
arrows). The variability of the Atlantic water circulation pattern is not known
from observations, but model results show that its circulation has a pulsat-
ing character expressed in the propagation of warm and cold events, changing
from seasonal to decadal time scales. An increase of the Atlantic water temper-
ature in Fram Strait and the Laptev Sea was observed in 2004 (Polyakov et al.,
2005).

3.2 Heat and Freshwater Content

The heat and freshwater contents of the Arctic Ocean are important integrated
parameters and are indicative of the potential role of the Arctic Ocean in the
global climate system. For example, the meridional overturning circulation in
the Atlantic Ocean, an important component of the global ocean circulation, is
significantly influenced by freshwater fluxes from the Arctic Ocean. It is sug-
gested that the Arctic Ocean accumulates fresh water during anticyclonic cir-
culation regimes and releases this water to the North Atlantic during cyclonic
circulation regimes. The Beaufort Gyre (illustrated in Fig. 9 by the closed clock-
wise circulation pattern in the Beaufort Sea region) is the major reservoir of
fresh water in the Arctic Ocean, and its dynamics (accumulation or release) is
responsible for freshwater fluxes to the Atlantic Ocean. The heat content of the
Arctic Ocean is potentially responsible for the sea ice melt and the Arctic atmo-
sphere warm-up. However, under the existing ocean state, the direct upward
loss of heat from the Atlantic water layer is greatly impeded by strong density
stratification and weak temperature gradients in the upper ocean. The impact
of this sensible heat reservoir on Arctic perennial ice is thought to be weak.

From 2000 to 2005, the most complete observational data available to ana-
lyze changes in the freshwater and heat contents of the Arctic Ocean are the in-
tensive investigations conducted in the vicinity of the North Pole by the North
Pole Environmental Observatory (NPEO) (Morison et al., 2002; psc.apl.
washington.edu/northpole/) and in the western Arctic by the Beaufort Gyre
Observing System (BGOS) (www.whoi.edu/beaufortgyre/index.html). Hy-
drographic data acquired in the North Pole region in the 1990s show a strong
increase in upper ocean salinity relative to the Environmental Working Group
Atlas of the Arctic Ocean (EWG, 1997, 1998) climatology (Fig. 10, left panel),
where water temperatures and salinities from observations were averaged and
gridded for the decades of 1950, 1960, 1970, and 1980. This increase was asso-
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Figure 10: North Pole hydrography for 1991-2005 (lines) compared with EWG climatology (lines with circles);
left: salinity, right: temperature. The EWG data (decadal means for 1950s–1980s) and the NPEO data (2001–2005)
are for spring, and the SCICEX data (1993–1999) are for autumn. Because of summer ice melt and river runoff,
the salinity of the upper ocean layer is always lower in autumn than in spring. Therefore, we expect that in the
1990s the spring water salinity was even greater than observed by SCICEX expeditions in autumn (Morison et al.,
2006).

ciated with a more cyclonic Arctic Ocean circulation in the 1990s. Under this
condition, the fresh water from river runoff tended to circulate along ocean
boundaries (see Fig. 9, bottom panel, wide blue lines), resulting in a decrease of
salinity along coastlines and an increase of salinity in the central Arctic (North
Pole). The NPEO data also show a large increase in Atlantic water temperature
at depth relative to the EWG climatology (Fig. 10, right panel). This was also
consistent with the cyclonic circulation regime conditions in the 1990s, when
more Atlantic water penetrated to the Arctic Ocean and, correspondingly, there
was an increase in Atlantic water temperature. Hydrographic measurements
made by the NPEO show that the conditions since 2000 have relaxed toward
the pre-1990 climatology, but some changes, at least partially, still persist.

The hydrography of the Beaufort Gyre (the major freshwater reservoir in
the Arctic Ocean) has also changed dramatically relative to the 1990s (Fig. 11).
The results of several hydrographic surveys in this region in the 1990s, com-
pared to the EWG data, indicate that, in contrast to the salinity increase at the
North Pole, the salinity of the upper layer in the Beaufort Gyre was significantly
reduced in the 1990s (Fig. 11, left panel). This is a consequence of both sea
ice melt during Arctic warming in the 1990s and the addition of fresh water
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from Siberian rivers. The shift in the pattern of freshwater transport is consis-
tent with the presence of cyclonic winds, which redirect the ocean surface flow
of fresh water from the Russian and Siberian coasts along the Siberian Seas
to the Beaufort Sea. Under anticyclonic winds, this fresh water flows toward
Fram Strait (compare the left and right circulation patterns in Fig. 9, wide blue
arrows). In the 2000s, relative to the 1990s, the salinity in the Beaufort Gyre
increased but was still approximately 1 unit less than shown by the EWG cli-
matology. There was also a very small salinity decrease in the 50- to 300-m
layer of the ocean, but this change was within the range of interannual vari-
ability. Interestingly, the total freshwater content in the Beaufort Gyre in the
2000s has not changed dramatically relative to climatology, but there has been
a significant change in the freshwater distribution (Fig. 12, panels 3 and 4). The
center of the freshwater maximum has shifted toward Canada and intensified
significantly relative to climatology.

In the 1990s, the water temperature in the Beaufort Gyre increased signifi-
cantly relative to EWG data (Fig. 11, right panel). As mentioned in Section 3.1,
the most pronounced warming (up to 1◦C) was observed in the Pacific water
layer (50–100 m), but the maximum heat accumulation was observed in the At-
lantic waters between 200 and 800 m deep. These waters, propagating cycloni-
cally from Fram Strait (Fig. 9, red arrows), reached the Beaufort Sea in the late
1990s, much later than when they reached the North Pole. The combination of
warming water temperatures and a change in the circulation pattern resulted
in a significant increase in the heat content in the Beaufort Gyre in the 2000s
relative to the EWG climatology and observations made in the beginning of the
1990s (Fig. 12, panels 1 and 2).

3.3 Sea Level

Figure 13 shows a sea level time series from several coastal stations in the Si-
berian seas. There is a positive sea level trend along the Arctic coastlines. From
1954 to 1989 the rate of sea level rise was estimated as 0.185 cm/year (Proshutin-
sky et al., 2004). Adding 1990–2004 data increases the estimated rate to 0.191
cm/year. The sea level time series correlates relatively well with the AO index
(the correlation coefficient is 0.83). Consistent with the influences of AO-driven
processes, the sea level dropped significantly after 1990 and increased after the
circulation regime changed from cyclonic to anticyclonic in 1997. In contrast,
from 2000 to 2004 the sea level rise rate has increased, in spite of a steady de-
crease in the AO index. At this point, because of the large interannual variabil-
ity, it is difficult to evaluate the significance of this change.
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Figure 11: Beaufort Gyre hydrography for 1991–2005 (lines) compared with EWG climatology (lines with circles)
for the vicinity of 75◦N and 150◦W; left: salinity, right: temperature.
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Figure 12: Summer heat (109 J/m2, left) and freshwater (m, right) content. Panels 1 and 3 show the heat and
freshwater content in the Arctic Ocean based on 1980s climatology (EWG, 1997, 1998). Panels 2 and 4 show the
heat and freshwater content in the Beaufort Gyre in 2000–2005 based on hydrographic surveys (the black dots
indicate locations of hydrographic stations). For reference, this region is outlined in black in panels 1 and 3. The
heat content is calculated relative to the water temperature freezing point in the upper 1000-m ocean layer. The
freshwater content is calculated relative to a reference salinity of 34.8.
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Figure 13: Annual mean relative sea level from nine tide gauge stations in the Siberian
seas (dotted line). The blue line is the 5-year running mean sea level. The red line is
the 5-year running mean AO index.

4. Sea Ice Cover

4.1 Extent and Thickness

D
uring 2005, each month except May showed a record minimum sea ice

extent in the northern hemisphere for the period 1979–2005. The ex-
tent of the sea ice cover is typically at or near its maximum in March

and its minimum in September. The ice extent in March 2005 was 14.8 million
km2. In September 2005 the ice extent was 5.6 million km2. In comparison,
the mean ice extent for March and September, for the period 1979–2005, was
15.7 million km2 and 6.9 million km2, respectively (Fig. 14). It is notable that
in March 2005 the ice extent fell within the median contour at almost every
location. In September 2005, the retreat of the ice cover was particularly pro-
nounced along the Eurasian and North American coastlines. Recent data from
winter 2006 indicate a further reduction in the maximum ice extent, reaching
14.5 million km2 in March.

To put the 2005 minimum and maximum ice extents into context, the time
series of the variability of ice extent in March and September for 1979–2005 are
presented in Fig. 15. In both cases, a negative trend is apparent, with a rate
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Figure 14: Sea ice extent in March (left) and September (right) 2005, when the ice cover was at or near its maxi-
mum and minimum extent, respectively. The magenta line indicates the median maximum and minimum extent
of the ice cover for 1979–2000. In both cases, the ice extent reached a record minimum in 2005 for the period
1979–2005. (Adapted from National Snow and Ice Data Center web site, http://nsidc.org/.)
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Figure 15: Time series of the difference in ice extent in March (maximum) and September (minimum) from
the mean values for 1979–2005. Based on a least-squares linear regression, the rates of decrease in March and
September were 2% per decade and 7% per decade, respectively. Recent data from March 2006 are also shown
and represent a new record minimum for the period of observation.
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of 2% per decade for March and 7% per decade for September. The summers
of 2002–2005 marked an unprecedented series of extreme ice extent minima
(Stroeve et al., 2005).

The state of the sea ice cover is intrinsically linked to the state of the ocean
and atmosphere. This is confirmed by the observation that during this same
period (1979–2005), the annual surface temperatures over land areas north of
60◦N have generally been rising and have been above the mean value for the
twentieth century since the early 1990s (Fig. 6).

Ice thickness is more difficult to monitor than ice extent. With satellite-
based techniques only recently introduced (Laxon et al., 2003; Kwok et al., 2006),
observations have been spatially and temporally limited. Data from submarine-
based observations indicate that at the end of the melt season the permanent
ice cover (the ice located toward the center of the Arctic basin that survives year
round; see Fig. 14, right panel) thinned by an average of 1.3 m between 1956–
1978 and the 1990s, from 3.1 to 1.8 m (Rothrock et al., 1999). On the other
hand, measurements of the seasonal ice cover (the ice around the periphery of
the Arctic basin that melts during the summer) do not indicate any statistically
significant change in thickness in recent decades (Melling et al., 2005; Haas,
2004; Polyakov et al., 2003).

The trends in the extent and thickness of the cover are consistent with ob-
servations of a significant loss of older, thicker ice out of the Arctic via Fram
Strait (e.g., Rigor and Wallace, 2004; Pfirman et al., 2004; Yu et al., 2004) in the
late 1980s and early 1990s (Fig. 16). This event coincided with the strong, pos-
itive AO period that extended from 1989 to 1995 (Fig. 5). When the AO is posi-
tive, atmospheric and oceanic conditions favor a thinner ice cover. A younger,
thinner ice cover, such as the one left behind from this event, is more sus-
ceptible to atmospheric or oceanic warming. It is of great interest to observe
whether the sea ice cover will continue its decline or rebound under the recent,
more-neutral AO conditions.

4.2 Sea Ice Surface Conditions

Data from 1982 to 2004, derived from Advanced Very High Resolution Radiome-
ter (AVHRR) Polar Pathfinder extended (APP-x) products (updated from Wang
and Key, 2005a,b), adjusted for a negative bias from 2001 onward, indicate an
overall negative trend for summer (June–August) mean albedo of −0.26%/year
(Fig. 17a). The trend increases slightly to −0.32%/year for April–September
(Fig. 17b), suggesting a possible increase in the duration of the melt season. In
both cases, the surface albedo is relatively low from 2001 to 2004 and is consis-
tent with observations of an earlier, more spatially extensive onset of melt and
decreases in ice concentration (Belchansky et al., 2004; Stroeve et al., 2005).

The time series of APP-x annual mean skin temperatures (the temperature
at which the surface is radiating) (Fig. 18a) over the same period shows less
consistent change over time, with a general increase in annual mean temper-
atures through the early 1990s and a decrease from 1995 onward. When the
time series is limited to spring (March–May), the 23-year linear trend is posi-
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Figure 16: Change in the age of ice on the Arctic Ocean, compared for September and based on results from a
simulation using drifting buoy data and satellite-derived ice concentration data (Rigor and Wallace, 2004). Open
water (OW) is shown in dark blue, and the oldest ice is shown in white. The darker green line marks 90% ice
concentration, and the lighter green lines mark ice concentrations of 80, 70, 60, and 50%. This sequence shows
that (a) most of the Arctic Ocean was covered by older, thicker sea ice in September 1988; (b) coincident with a
transition to high-AO conditions in 1989 (Fig. 5), most of the older, thicker sea ice was rapidly flushed out of the
Arctic Ocean through Fram Strait, so that by 1990 only 30% of the Arctic Ocean was covered by older, thicker sea
ice; (c) the relative distribution between older, thicker and younger, thinner sea ice persisted during the 1990s,
in spite of a shift back towards a more neutral AO in the mid-1990s; and (d) the average ice age over the Arctic
Ocean apparently continued to decrease through 2005, with older, thicker ice now limited to the area north of
the Canadian Archipelago.
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Figure 17: Time series of APP-x surface albedo for areas between 60◦ and 90◦N and with ice concentrations of
15–100%. (a) Means averaged over June-August. (b) Means averaged over April–September.
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Figure 18: Time series of APP-x skin temperatures for areas between 60◦ and 90◦N and with ice concentrations
of 15–100%. (a) Means averaged over 12 months. (b) Means averaged over March–May.

tive (0.14 K/year), with greater interannual variability (Fig. 18b), indicative of
the seasonal dependence of warming trends.

Large regional variability, typical of Arctic conditions, is observed in albedo,
skin temperature, and ice concentration (Cavalieri et al., 1997). From 1996 to
2004, the largest decreases in surface albedo correspond with a reduction in ice
extent in the Beaufort and Chukchi Seas, while lower albedos over the central
ice pack appear to be consistent with the lower total ice concentrations over
this same period. It remains to be determined how much of the albedo change
is due to the presence of more open water vs. more extensive ice-surface melt
and ponding. In either case, the changes represent significant modifications of
the ice pack.
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5. Land

5.1 Vegetation

A
key question facing Arctic terrestrial ecologists at the moment is “What

will happen to the tundra regions if the Arctic Ocean becomes season-
ally ice free as indicated by current trends in sea ice?” (Overpeck et

al., 2005). There is an intimate connection between Arctic vegetation and the
ocean/sea ice because the tundra biome is essentially defined by its close prox-
imity to the Arctic Ocean (Fig. 19). Over 80% of the lowland Arctic tundra is
within 100 km of at least seasonally frozen seawaters that provide the cool sum-
mer temperatures necessary for tundra’s presence. Changes to the boundary of
the summer ice in the Arctic could affect important factors for plant growth,
including the temperature of adjacent land surfaces (Overland et al., 2004b)
and the length of the thaw season. Changes to the vegetation will have major
implications for the permafrost and active layer and soils (Nelson et al., 1998;
Walker et al., 2003), snow (Sturm et al., 2001; 2005), hydrology (Hinzman et al.,
2005), trace-gas fluxes (Oechel, 2003; Reeburgh et al., 1998), wildlife (Griffith
et al., 2002), and people who live in the Arctic. They also have global implica-
tions because of albedo feedbacks to the climate system (Chapin et al., 2005;
Beringer et al., 2001). Summaries of system-wide changes in Arctic terrestrial
systems are reported in several references (Serreze et al., 2000; Morison et al.,
2001; Hinzman et al., 2005). Before future states of tundra ecosystems can be
modeled, it is first necessary to inventory what types of change have already
been detected.

The most convincing evidence of widespread change to the vegetation in
the Arctic comes from the historic trends of the tundra greenness as detected
from satellites. The Normalized Difference Vegetation Index (NDVI) is a mea-
sure of vegetation greenness derived from the reflectance of the surface in the
red and near-infrared channels. If the climate warms, higher NDVI values might
be expected to shift northward. Earlier global studies of NDVI changes indi-
cated a general pattern of increased NDVI in the region between 40◦N and
70◦N during 1981–1999 (Myneni et al., 1997, 1998; Zhou et al., 2001; Lucht et
al., 2002). Studies of the tundra area of northern Alaska indicate an increase
of 17% in NDVI values in this region where the Summer Warmth Index (SWI)
measured at ground stations across northern Alaska have been increasing by
0.16–0.34◦C/year during the same period (Jia et al., 2003). There are no time
series of vegetation biomass measurements that can be linked directly to the
NDVI record; however, correlations between zonal tundra biomass and tem-
perature suggest an average increase exceeding 150 g/m2 over the last 20 years
within the area studied.
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Figure 19: Vegetation of the circumpolar Arctic (Walker et al., 2005). The southern boundary of Arctic vegetation
is the treeline. This map gives a good impression of just how closely tied the tundra biome is to the ocean; 61%
of lowland tundra is within 50 km of sea ice, 80% is within 100 km, and 100% is within 350 km.

A more recent analysis covering the boreal forest and tundra region of North
America indicates that different patterns of greening have occurred in the bo-
real forest and tundra areas (Goetz et al., 2005). The NDVI has increased in
tundra regions by an average of about 10% for all of North America over the
last 20 years, whereas the NDVI has declined in the boreal forest regions, par-
ticularly during the past 10 years (Fig. 20). The increase in the tundra NDVI is
attributed primarily to changes in the abundance of shrubs, whereas the de-
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Figure 20: Trends of gross primary production (Pg as interpreted from NDVI) in the
tundra regions vs. boreal forest areas. The dotted lines represent linear trends of the
plotted parameters. Both areas have shown a general increase in air temperature (Ta),
but with the drop in temperature following the Pinatubo eruption in 1992. Although
both areas have warmed since the eruption and Pg initially recovered in both areas, Pg
has tended to increase in the tundra since 1997, whereas Pg declined in the forested
areas. (From Goetz et al., 2005.)

cline in the forest NDVI is possibly due to drought-induced stresses. These
conclusions are based on observed changes in shrub cover in parts of Alaska
during the past 50+ years (Sturm et al., 2001; Silapswan et al., 2001) and to anal-
yses of tree rings in Alaska (Barber et al., 2000; Lloyd and Fastie, 2002). Further
support for the important shrubs in the changing tundra come from long-term
experimental studies by the International Tundra Experiment, observations of
shrub-snow interactions (Sturm et al., 2005), and experimental studies of tun-
dra response to fertilization (Mack et al., 2004). Along with direct tundra and
boreal forest changes, forest fires are having an increasing role. The 2004 fire
season in Alaska had the largest total timber loss in the 56-year record.

5.2 Water and Ice

The river discharge database R-ArcticNet (www.R-Arcticnet.sr.unh.edu) was
extended up to 2004 for 48 downstream river gages. The river inflow to the
ocean was computed using a hydrological analogy approach in combination
with linear and multiple correlation (Shiklomanov et al., 2000). For regions
where no analogous site was available, additional meteorological information
and water balance simulations were used (Rawlins et al., 2003). The best esti-
mates were obtained for the Asian and European seas, as well as for the Bering
Strait and Beaufort Sea, because only relatively small areas there are unmoni-
tored and data are more available.
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Table 1: Characteristics of the annual inflow to the Arctic Ocean for 1980–2004. (From R-ArcticNet database,
www.R-Arcticnet.sr.unh.edu)

Mean Mean Change in Maximum annual Minimum annual
discharge, discharge, mean inflow, inflow,
2000–2004 1980–1999 discharge 1980–2004 1980–2004

Basin km3/year km3/year % km3 year km3 year

Bering Strait* 311 301 3.3 362 1990 259 1999
Hudson Bay and Strait 920 905 1.7 1020 1992 770 1981
North America 1170 1170 0 1350 1996 990 1995
North America with

Hudson Bay and Strait 2090 2080 0.5 2310 1996 1810 1981
Europe 708 708 0 790 1993 590 1980
Asia 2560 2450 4.5 2780 2002 2150 1982
Arctic Ocean Basin 4440 4330 2.5 4770 1997 3870 1982
Arctic Basin, Hudson Bay

and Strait Basins 5670 5530 2.5 6040 1997 5070 1982

* including Norton Sound, Yukon River, and Anadyrsky Bay basins.

Table 1 compares discharge to the ocean for 2000–2004 with that for 1980–
1999 for different drainage basins. The last 5 years were characterized by an
increase of total discharge to the Arctic Ocean, mainly due to a contribution
from Asian rivers. The mean 2000–2004 discharge from Asia was 110 km3 (5%)
higher than for the previous 20 years. The mean discharge to the ocean from
North America and Europe for 2000–2004 was practically unchanged relative to
1980–1999. Adjacent territories such as Bering Strait, Hudson Bay, and Hud-
son Strait drainage basins had insignificantly higher discharges in 2000–2004
compared with the previous 20 years.

A consistent increase in river discharge is observed from Eurasia for a longer
time interval as well. Most of the rivers show an increasing trend in annual river
discharge over the observational periods. The mean discharge over 2000–2004
for the large Eurasian rivers was 3–9% higher than the discharge over 1936–
2004. Thus, the contemporary data further confirm the presence of a signif-
icant increasing trend in the freshwater discharge to the Arctic Ocean from
Eurasia documented earlier by Peterson et al. (2002) (Fig. 21). The maximum
total discharge of the six largest Eurasian rivers over 1936–2004 was observed
in 2002, at 2080 km3/year (Fig. 21). There is no clear picture for the North
American rivers; they generally have both positive and negative insignificant
long-term discharge trends. The discharge of the Yukon and Mackenzie Rivers
during the last 5 years was higher than normal, although the estimated total
discharge to the ocean from North America has not changed significantly (Ta-
ble 1).

The contribution of glaciers to the freshwater inflow to the Arctic and world
oceans has been increasing as a result of climate warming and will affect many
aspects of the Arctic climate system. This comes primarily from glaciers in
the Canadian, Russian, and Svalbard archipelagos and from individual ice caps
around the Greenland Ice Sheet (GRIS) (Dyurgerov and Meier, 2005). New and
more precise measurements show surface thinning along the southwestern and
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Figure 21: Total annual discharge to the Arctic Ocean from the six largest rivers in the
Eurasian pan-Arctic for 1936–2004. The least-squares linear increase was 2.3 km3 per
year. (Updated from Peterson et al., 2002.)

southeastern coasts of Greenland and a substantial increase in surface melt-
ing and water concentration on the surface in the ablation zone of GRIS (Ab-
dalati et al., 2001; Zwally et al., 2002; Box et al., 2004, 2006; Krabill et al., 2004;
Thomas, 2004). Large tidewater glaciers have nearly doubled in surface veloc-
ity, and basal melting has increased (Krabill et al., 2004; Thomas, 2004; Joughin
et al., 2004; Steffen et al., 2004). These observations and an analysis of climate
change suggest that GRIS dynamics has responded with no delay to recent cli-
mate and mass balance changes, at least along the coast. While there are clear
thinning and accelerated outflows near the edges, there is a debate about the
mass balance for Greenland as a whole (Johannessen et al., 2005; Rigiot and
Kanagaratnam, 2006).1

Freshwater inflow from Arctic mountain glaciers, icecaps, and GRIS has
been rising over the last several decades. This rise has been especially fast since
the end of the 1980s and mid-1990s. It is likely that freshwater inflow to the Arc-
tic Ocean from glaciers will continue to rise as a result of climate warming. Al-
though many small glaciers will disappear, the large glaciers in Canadian, Rus-
sian, the Svalbard archipelagos, and the Greenland ice sheet will add to the
hydrological cycle as cold glaciers warm and begin producing more runoff.

1Also personal communication, H.J. Zwally, Goddard Space Flight Center, NASA, 2006.
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5.3 Permafrost

Observations show a general increase in permafrost temperatures during the
last several decades in Alaska (Osterkamp and Romanovsky, 1999; Romanov-
sky et al., 2002; Clow and Urban, 2003; Osterkamp, 2003), northwest Canada
(Couture et al., 2003; Smith et al., 2005), Siberia (Pavlov, 1994; Oberman and
Mazhitova, 2001; Romanovsky et al., 2001; Pavlov and Moskalenko, 2002), and
northern Europe (Isaksen et al., 2000; Harris and Haeberli, 2003). Uninter-
rupted permafrost temperature records for more than 20 years have been ob-
tained by the University of Alaska Fairbanks along the International Geosphere-
Biosphere Programme Alaskan transect, which spans the entire continuous
permafrost zone in the Alaskan Arctic. All of the observatories show a substan-
tial warming during the last 20 years. The amount of warming was different
at different locations, but it was typically 0.5–2◦C at the depth of zero seasonal
temperature variations in permafrost (Fig. 22).

These data also indicate that the increase in permafrost temperatures is
not monotonic. During the observational period, relative cooling has occurred
in the mid-1980s, in the early 1990s, and then again in the early 2000s. As a
result, permafrost temperatures at 20 m deep experienced stabilization and
even a slight cooling during these periods. An even more significant cooling
of permafrost was observed during the very late 1990s and the early 2000s in
interior Alaska (not shown). A significant portion of this cooling is related to a
shallower-than-normal winter snow cover during this period. During the last
three years, there was a sign of recovery in mean annual temperatures at shal-
low depths. In 2005, soil temperatures in interior Alaska reached the temper-
atures of the early to mid-1990s, which were the warmest during the last 70
years.

Data on changes in the active layer thickness in the Arctic lowlands are less
conclusive. In the North American Arctic, the active layer thickness experiences
a large interannual variability, with no discernible trends; this is likely because
of the short length of historical data records (Brown et al., 2000). A noticeable
increase in the active layer thickness was reported for the Mackenzie Valley
(Nixon et al., 2003). However, this positive trend reversed to a negative trend
at most of these sites after 1998 (Tarnocai et al., 2004). An increase in thickness
of more than 20 cm between the mid-1950s and 1990, derived from the histor-
ical data collected at the Russian meteorological stations, was reported for the
continuous permafrost regions of the Russian Arctic (Frauenfeld et al., 2004;
Zhang et al., 2005). At the same time, reports from several specialized perma-
frost research sites in central Yakutia showed no significant changes in the ac-
tive layer thickness (Varlamov et al., 2001; Varlamov, 2003). The active layer
was especially deep in 2005 in interior Alaska. Around Fairbanks the 2005 ac-
tive layer depth was the deepest observed in the past 10 years. Data from many
of these sites show that the active layer that developed during the summer of
2004 (one of the warmest summers in Fairbanks on record) did not completely
freeze during the 2004–2005 winter; a thin layer just above the permafrost table
was unfrozen during the entire winter.
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Figure 22: Top: Locations of the long-term University of Alaska permafrost observato-
ries in northern Alaska. Bottom: Changes in permafrost temperatures at a depth of 20
m over the last 20–25 years. (Updated from Osterkamp, 2003.)

The long-term thawing of permafrost starts when the soil layer that was un-
frozen during the summer above the permafrost does not refreeze completely,
even during the most severe winter. The residual unfrozen layer is termed
“talik,” and the process is often being referred to as “talik formation.” The cause
of this event could be climate warming and/or an increase in snow accumula-
tion (for any reason) at the ground surface. Changes in the surface hydrology
could also trigger long-term permafrost thawing. However, a more common
cause of increased thawing has been disturbances of the ground surface above
the permafrost, both natural (forest fire, flood) and human-made (agricultural
activities, roads and building construction, etc.).

There are a very limited number of localities within the permafrost zone
where talik formation has been carefully documented. One of the best exam-
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Figure 23: Monthly ground temperature records at 0.2 m and 3.2 m in 1964 (a cold
year) and 1989 (a warm year) at the weather station Khoseda-Khard, in northeast Eu-
ropean Russia. (From Klimatologicheskii spravochnik SSSR, 1961–1992.)

ples is the Tanana River Flats near Fairbanks, Alaska, where naturally occurring
long-term permafrost thawing was studied and documented by Jorgenson et
al. (2001). This study revealed widespread and rapid permafrost thawing that
caused a shift in ecosystems from birch forest to fens and bogs. Similar pro-
cesses were reported by Osterkamp et al. (2000) for the Tok area in Alaska.
Deepening of the permafrost table from 3.5 m in 1989 to 5 m in 2004 was re-
ported for some areas at the Gakona Permafrost Observatory in Alaska (Roman-
ovsky et al., 2005). There is also evidence that the recent warming has already
resulted in permafrost thawing and talik formation at some sites in northern
Eurasia. For example, during the 1960s and early 1970s, ground temperatures
at 3.2 m at Khoseda-Khard, in the European North of Russia, were at or below
0◦C, with some years also showing the 1.6- and 2.4-m levels perennially frozen.
Conditions changed drastically during the latter part of the twentieth century
(Fig. 23). In the relatively cold year of 1964, 3.2-m ground temperatures were at
0◦C year-round, suggesting a phase transition (the 2.4-m level thawed out dur-
ing fall). In the relatively warm year of 1989, fall temperatures at 3.2 m reached
3.3◦C. Thawing of permafrost as a result of forest fires and agricultural activities
in Alaska has been reported by Osterkamp and Romanovsky (1999), Romanov-
sky and Osterkamp (2000), and Yoshikawa et al. (2003).

6. Summary

The observations highlighted in this report indicate that many of the trends
documented in the ACIA report (2004, 2005) continued during 2000–2005 and
suggest a sustained period of warming in the Arctic region. Convincing evi-
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dence includes the continued reduction in sea ice extent, observed at both the
winter maximum and summer minimum, and widespread changes in Arctic
vegetation, with the tundra experiencing an increase in greenness and the bo-
real forest regions showing a decrease in greenness.

There are indications that some components of the physical system may
be recovering and returning to the recent climatological norms observed from
1950 to 1980. For instance, the pattern of near-surface temperature anomalies
for 2000–2005 has been distinctly different from the patterns that characterized
the second half of the twentieth century, exhibiting positive (warm) anomalies
over the entire Arctic region. Observations from the early spring of 2006 show
a pattern more consistent with the two patterns that dominated the twentieth
century, with well-defined regions of warm and cool anomalies. Ocean salinity
and temperature profiles taken at the North Pole and the Beaufort Gyre both
indicate that since 2000 the dramatic shifts observed in the 1990s have relaxed
toward the pre-1990 climatology. On the land, permafrost temperatures con-
tinued to rise within most of the permafrost-affected areas but at a noticeably
slower rate than in the 1990s. Changes in the active layer thickness (the rela-
tively thin layer of ground between the surface and permafrost that undergoes
seasonal freezing and thawing) are inconsistent. While some of the monitored
sites show a slightly increasing trend in the thickness of the active layer, most
do not.

There also appears to be a destabilization of several known relationships
between climate indices and Arctic physical system characteristics. For exam-
ple, during the period of satellite observations, starting in 1978, a strong cor-
relation between the Arctic Oscillation index and sea ice conditions had been
observed. A positive AO, characterized by a cyclonic atmospheric circulation
regime, creates conditions that favor a relatively low sea ice extent. This re-
lationship was clearly evident during the strong positive AO pattern that per-
sisted from 1989 to 1995. Since then, the annual averaged AO index has been
exhibiting more neutral conditions, which should support a reversal or, at least,
a deceleration in the overall rate of reduction in the extent of the ice cover.
Instead, 2002–2005 has been characterized by an unprecedented series of ex-
treme ice extent minima.

The observations highlighted in the report and the mixed tendencies they
reveal further illustrate the sensitivity and complexity of the Arctic physical en-
vironment. They also support recommendations to maintain and expand ef-
forts to establish a coordinated Arctic observation network, consistently doc-
umented by diverse, international activities (e.g., ACIA, 2004, 2005; SEARCH,
2001, 2005; DAMOCLES, 2005). Long-term monitoring of key parameters, cou-
pled with detailed studies of specific processes, will improve the understanding
of this region and enable the development of more accurate models and pre-
dictions of its future state. The incentive for supporting and achieving these
advancements is high, given the relevance of the physical conditions to other
key elements of the Arctic environment and global climate system.
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